高中数学基础:数列的极限及其准则

数列极限的定义

设$\{x_n\}$为一数列,若有常数$a$,对任意给定的正数$\varepsilon$(无论$\varepsilon$有多小),总存在正整数$N$,使当$n>N$时,不等式$|x_n-a|<\varepsilon$恒成立,则称$a$是数列$\{x_n\}$的极限或称$\{x_n\}$收敛于$a$,记为

高中数学基础:随机变量及其分布

基本概念

若随机变量$X$服从一个数学期望为$μ$、方差为$σ^2$的正态分布,记为$N(μ,σ^2)$。其概率密度函数为正态分布的期望值$μ$决定了其位置,其标准差$σ$决定了分布的幅度。当$μ = 0, σ = 1$时的正态分布是标准正态分布。

高中数学基础:平面向量

平面向量基本概念

1、向量:既有大小,又有方向的量叫做向量,如力、位移等
2、数量:只有大小,没有方向的量称为数量,如年龄、身高、长度、面积、体积、质量等

零向量:长度为0的向量
单位向量:长度为1个单位的向量

高中数学基础:排列与组合

基本计数原理

(1)分类加法计数原理(分类相加)

做一件事情,完成它有$n$类办法,在第1类办法中有$m_1$中不同的方法,在第2类办法中有$m_2$中不同的方法······在第n类办法中有$m_n$中不同的方法。那么完成这件事情共有$N=m_1+m_2+···+m_n$种不同的方法。

高中数学基础:数列与不等式

数列

等差数列

(1)通项公式

$$
a_n=a_1+(n-1)d
$$

(2)前n项和公式

$$
S_n=\frac{(a_1+a_n)n}{2}
$$

(3)常用性质

① 若$m+n=p+q , (m,n,p,q \in N_+)$,则$a_m+a_n=a_p+a_q$;
② 下标为等差数列的项$(a_k,a_{k+m},a_{k+2m},···)$,仍组成等差数列;
③ 数列$\{\lambda a_n+b\}$ ($\lambda,b$为常数)仍为等差数列;
④ 若$\{a_n\}$、$\{b_n\}$是等差数列,则$\{ka_n\}$、$\{ka_n+pb_n\}$($k$、$p$是非零常数)、$\{a_{p+nq}\}$ $(p,q \in N^*)···$ 也是等差数列;
⑤ 单调性:$\{a_n\}$的公差为$d$,则:

1) $d>0 \Leftrightarrow \{a_n\}$为递增数列;
2) $d<0 \Leftrightarrow \{a_n\}$为递减数列;
3) $d=0 \Leftrightarrow \{a_n\}$为常数列;
⑥ 若数列$\{a_n\}$为等差数列$\Leftrightarrow a_n=pn+q$ ($p,q$是常数)
⑦ 若等差数列$\{a_n\}$的前$n$项和$S_n$,则$S_k$、$S_{2k}-S_k$、$S_{3k}-S_{2k}···$是等差数列。

等比数列

(1)通项公式

$$
a_n=a_1q^{n-1} ,, (q≠1)
$$

(2)前n项和公式

$$
S_n=\frac{a_1(1-q^n)}{1-q}
$$

(3)常用性质

① 若$m+n=p+q , (m,n,p,q \in N_+)$,则$a_m·a_n=a_p·a_q$;
② $(a_k,a_{k+m},a_{k+2m},···)$为等比数列,公比为$q^k$(下标成等差数列,则对应的项成等比数列);
③ 数列$\{\lambda a_n\}$($\lambda$为不等于零的常数)仍是公比为$q$的等比数列;若有正项等比数列$\{a_n\}$,则$\{\operatorname{log}a_n \}$是公差为$\operatorname{log}(q)$的等差数列;
④ 若$\{a_n\}$是等比数列,则$\{ka_n\}$、$\{a_n^2\}$、$\{\frac{1}{a_n}\}$、$\{a_n^r\}(r \in Z)$也是等差数列,公比依次是$q,q^2,\frac{1}{q},q^r$;
⑤ 单调性:$\{a_n\}$的公比为$q$,则:

1) $a_1 > 0, q > 1$或$a_1 < 0, 0 < q < 1 \Rightarrow \{a_n\}$为递增数列;
2) $a_1 > 0, 0 < q < 1$或$a_1 < 0, q >1 \Rightarrow \{a_n\}$为递减数列;
3) $q=1 \Rightarrow \{a_n\}$为常数列;
4) $q<0 \Rightarrow \{a_n\}$为摆动数列;
⑥ 既是等差数列又是等比数列的数列是常数列;
⑦ 若等比数列$\{a_n\}$的前$n$项和$S_n$,则$S_k$、$S_{2k}-S_k$、$S_{3k}-S_{2k}$···是等比数列。

不等式

不等关系与不等式

① 对称性 $a > b \Rightarrow b < a$
② 传递性 $a > b, b > c \Rightarrow a > c$
③ 可加性 $a > b \Rightarrow a+c > b+c$
     同向可加性 $a > b, c > d \Rightarrow a+c > b+d$
     异向可减性 $a > b, c < d \Rightarrow a-c > b-d$
④ 可积性 $a > b, c > 0 \Rightarrow ac > bc$
                 $a > b, c < 0 \Rightarrow ac < bc$
⑤ 同向正数可乘性 $a > b > 0,c > d > 0 \Rightarrow ac>bd$
     异向正数可除性 $a > b > 0,0 < c < d \Rightarrow \frac{a}{c} > \frac{b}{d}$
⑥ 平方法则 $a > b >0 \Rightarrow a^n > b^n , (n \in N,且n>1)$
⑦ 开方法则 $a > b >0 \Rightarrow \sqrt[n]{a} > \sqrt[n]{b} , (n \in N,且n>1)$
⑧ 倒数法则 $a > b >0 \Rightarrow \frac{1}{a} < \frac{1}{b} ;, a < b < 0 \Rightarrow \frac{1}{a} > \frac{1}{b}$

不等式证明的几种常用方法

常用方法有:比较法(作差,作商法)、综合法、分析法;
其他方法有:换元法、反证法、缩放法、构造法、函数单调性法、数学归纳法等


Powered by AppBlog.CN     浙ICP备14037229号

Copyright © 2012 - 2020 APP开发技术博客 All Rights Reserved.

访客数 : | 访问量 :