高性能分布式锁Redisson的使用
引入Redisson
在一些高并发的场景中,比如秒杀,抢票,抢购这些场景,都存在对核心资源,商品库存的争夺,控制不好,库存数量可能被减少到负数,出现超卖的情况。或者产生唯一的一个递增ID,由于web应用部署在多个机器上,简单的同步加锁是无法实现的,给数据库加锁的话,对于高并发,1000/s的并发,数据库可能由行锁变成表锁,性能下降会厉害。那相对而言,redis的分布式锁,相对而言,是个很好的选择,redis官方推荐使用的Redisson就提供了分布式锁和相关服务。
分布式系统有一个著名的理论CAP,指在一个分布式系统中,最多只能同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance)这三项中的两项。在微服务系统中,一个请求存在多级跨服务调用,往往需要牺牲强一致性以保证系统高可用,比如通过分布式事务,异步消息等手段完成。但还是有的场景,需要阻塞所有节点的所有线程,对共享资源的访问。比如并发时“超卖”和“余额减为负数”等情况。
本地锁可以通过语言本身支持,要实现分布式锁,就必须依赖中间件,数据库、redis、zookeeper等。
分布式锁特性
- 互斥:互斥好像是必须的,否则怎么叫锁
- 死锁: 如果一个线程获得锁,然后挂了,并没有释放锁,致使其他节点(线程)永远无法获取锁,这就是死锁。分布式锁必须做到避免死锁
- 性能: 高并发分布式系统中,线程互斥等待会成为性能瓶颈,需要好的中间件和实现来保证性能
- 锁特性:考虑到复杂的场景,分布式锁不能只是加锁,然后一直等待。最好实现如Java Lock的一些功能如:锁判断,超时设置,可重入性等
使用Redisson
Redisson的使用方式详见官方文档:https://github.com/redisson/redisson/wiki/2.-%E9%85%8D%E7%BD%AE%E6%96%B9%E6%B3%95
添加jar包的依赖:
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
</dependency>
配置Redisson
public class RedissonManager {
private static Config config = new Config();
//声明redisso对象
private static Redisson redisson = null;
//实例化redisson
static{
config.useSingleServer().setAddress("127.0.0.1:6379");
//得到redisson对象
redisson = (Redisson) Redisson.create(config);
}
//获取redisson对象的方法
public static Redisson getRedisson(){
return redisson;
}
}
锁的获取和释放
public class DistributedRedisLock {
//从配置类中获取redisson对象
private static Redisson redisson = RedissonManager.getRedisson();
private static final String LOCK_TITLE = "redisLock_";
//加锁
public static boolean acquire(String lockName) {
//声明key对象
String key = LOCK_TITLE + lockName;
//获取锁对象
RLock mylock = redisson.getLock(key);
//加锁,并且设置锁过期时间,防止死锁的产生
mylock.lock(2, TimeUnit.MINUTES);
System.err.println("======lock: " + Thread.currentThread().getName() + "======");
//加锁成功
return true;
}
//锁的释放
public static void release(String lockName) {
//必须是和加锁时的同一个key
String key = LOCK_TITLE + lockName;
//获取所对象
RLock mylock = redisson.getLock(key);
//释放锁(解锁)
mylock.unlock();
System.err.println("======unlock: " + Thread.currentThread().getName() + "======");
}
}
业务逻辑中使用分布式锁
@RequestMapping("/redder")
@ResponseBody
public String redder() throws IOException{
String key = "test";
//加锁
DistributedRedisLock.acquire(key);
//执行具体业务逻辑
dosoming
//释放锁
DistributedRedisLock.release(key);
//返回结果
return soming;
}
版权声明:
作者:Joe.Ye
链接:https://www.appblog.cn/index.php/2023/04/01/use-of-high-performance-distributed-lock-redisson/
来源:APP全栈技术分享
文章版权归作者所有,未经允许请勿转载。
共有 0 条评论