NumPy常见运算之min、max、mean、sum、exp、sqrt、sort、乘法、点积、拼接、切分
基本运算
- ndarray.min() / np.min(ndarray)
- ndarray.max() / np.max(ndarray)
- ndarray.mean() / np.mean(ndarray)
- ndarray.sum() / np.sum(ndarray)
- ndarray.argmax() 最大值的索引
- np.exp()
- np.sqrt() 开根号
- np.sort() 排序
- np.argsort() 排序的索引
def numpy():
n = np.array([[5, 10, 15],
[20, 25, 30],
[35, 40, 45]])
print(n.min()) # 5
print(n.max()) # 45
print(n.mean()) # 25.0
print(n.sum()) # 225
# 指定所操作的维度,axis=0 按列,axis=1 按行
print(n.sum(axis=0)) # [60 75 90]
print(n.sum(axis=1)) # [ 30 75 120]
print('- ' * 20)
n1 = np.arange(3)
print(n1) # [0 1 2]
print(np.exp(n1)) # [1. 2.71828183 7.3890561 ]
print(np.sqrt(n1)) # [0. 1. 1.41421356]
print('- ' * 20)
n2 = np.random.random((2, 3)) * 10
n3 = np.floor(n2)
print(n2)
'''
[[8.99880764 4.00463427 0.419855 ]
[6.25824191 3.02688928 3.98404113]]
'''
print(n3)
'''
[[8. 4. 0.]
[6. 3. 3.]]
'''
print('- ' * 20)
a = np.array([[4, 3, 5], [1, 6, 1]])
print(a)
a1 = np.sort(a, axis=1)
print(a1)
'''
[[3 4 5]
[1 1 6]]
'''
a.sort(axis=1)
print(a)
'''
[[3 4 5]
[1 1 6]]
'''
print('- ' * 20)
b = np.array([4, 3, 1, 2])
i = np.argsort(b)
print(i) # [2 3 1 0]
print(b[i]) # [1 2 3 4]
矩阵运算
(1)矩阵乘法
- ndarray1 * ndarray2
- ndarray1.dot(ndarray2)
- np.dot(ndarray1, ndarray2)
(2)拼接 ndarray 对象
- np.hstack() # 横着拼接
- np.vstack() # 竖着拼接
(3)切分 ndarray 对象
- np.hsplit() # 横着切
- np.vsplit() # 竖着切
def numpyMatrix():
n1 = np.array([[1, 1],
[0, 1]])
n2 = np.array([[2, 0],
[3, 4]])
print(n1 * n2)
'''
[[2 0]
[0 4]]
'''
print(n1.dot(n2))
'''
[[5 4]
[3 4]]
'''
print(np.dot(n1, n2))
'''
[[5 4]
[3 4]]
'''
n1 = np.array([[1, 2],
[3, 4]])
n2 = np.array([[5, 6],
[7, 8]])
hstack = np.hstack((n1, n2)) # 横着拼接
print(hstack)
'''
[[1 2 5 6]
[3 4 7 8]]
'''
vstack = np.vstack((n1, n2)) # 竖着拼接
print(vstack)
'''
[[1 2]
[3 4]
[5 6]
[7 8]]
'''
print('- ' * 20)
a = np.floor(10 * np.random.random((2, 12)))
print(a)
'''
[[9. 8. 4. 4. 5. 1. 2. 0. 7. 0. 7. 8.]
[9. 4. 3. 5. 5. 5. 0. 4. 9. 1. 2. 3.]]
'''
print(np.hsplit(a, 3)) # 横着切
'''
[array([[9., 8., 4., 4.],
[9., 4., 3., 5.]]), array([[5., 1., 2., 0.],
[5., 5., 0., 4.]]), array([[7., 0., 7., 8.],
[9., 1., 2., 3.]])]
'''
print(np.hsplit(a, (3, 5))) # 指定切分位置
'''
[array([[9., 8., 4.],
[9., 4., 3.]]), array([[4., 5.],
[5., 5.]]), array([[1., 2., 0., 7., 0., 7., 8.],
[5., 0., 4., 9., 1., 2., 3.]])]
'''
b = a.T
print(b)
'''
[[9. 9.]
[8. 4.]
[4. 3.]
[4. 5.]
[5. 5.]
[1. 5.]
[2. 0.]
[0. 4.]
[7. 9.]
[0. 1.]
[7. 2.]
[8. 3.]]
'''
print(np.vsplit(b, 3)) # 竖着切
'''
[array([[9., 9.],
[8., 4.],
[4., 3.],
[4., 5.]]), array([[5., 5.],
[1., 5.],
[2., 0.],
[0., 4.]]), array([[7., 9.],
[0., 1.],
[7., 2.],
[8., 3.]])]
'''
版权声明:
作者:Joe.Ye
链接:https://www.appblog.cn/index.php/2023/04/01/common-operations-of-numpy-include-min-max-mean-sum-exp-sqrt-sort-multiplication-dot-product-concatenation-and-segmentation/
来源:APP全栈技术分享
文章版权归作者所有,未经允许请勿转载。
THE END
0
二维码
打赏
海报
NumPy常见运算之min、max、mean、sum、exp、sqrt、sort、乘法、点积、拼接、切分
基本运算
ndarray.min() / np.min(ndarray)
ndarray.max() / np.max(ndarray)
ndarray.mean() / np.mean(ndarray)
ndarray.sum() / np.sum(ndarray)
ndarray.……
文章目录
关闭
共有 0 条评论