SpringBoot在Redis中使用BloomFilter布隆过滤器机制

Redis缓存穿透:查询Redis,为了防止他人恶意使用不存在的key访问redis,造成大批量的出现缓存穿透现象(直接查询数据库,导致数据库扛不住)

Maven依赖

添加 Redis & BloomFilter 的核心依赖包:

<!--使用Redis-->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!--借助guava的布隆过滤器-->
<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>19.0</version>
</dependency>

项目配置

配置Redis连接信息:

spring:
  redis:
    database: 3
    host: 127.0.0.1
    port: 6379
    password: 12345
    jedis.pool.max-idle: 100
    jedis.pool.max-wait: -1ms
    jedis.pool.min-idle: 2
    timeout: 2000ms

项目代码

如果只是一般的使用Redis存字符串的话,使用StringRedisTemplate,就不需要配置序列化。
但是这里使用的是RedisTemplate<String, Object> redisTemplate,存储的是对象,所以为了防止存入的对象值在查看的时候不显示乱码,就需要配置相关的序列化(其实我们存的bit结构数据,布隆过滤器存值分分钟都是百万级别的,会因为数据量太大redis客户端也没办法显示,不过不影响使用)

RedisConfig.class

import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.google.common.base.Charsets;
import com.google.common.hash.Funnel;
import cn.appblog.mall.util.BloomFilterHelper;
import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.cache.RedisCacheManager;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;

@Configuration
@EnableCaching
public class RedisConfig {

    @Bean
    public CacheManager cacheManager(RedisConnectionFactory connectionFactory) {
        RedisCacheManager rcm=RedisCacheManager.create(connectionFactory);
        return rcm;
    }

    @Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
        RedisTemplate<String, Object> redisTemplate = new RedisTemplate<String, Object>();
        redisTemplate.setConnectionFactory(factory);

        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new
                Jackson2JsonRedisSerializer(Object.class);
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        //序列化设置 ,这样计算是正常显示的数据,也能正常存储和获取
        redisTemplate.setKeySerializer(jackson2JsonRedisSerializer);
        redisTemplate.setValueSerializer(jackson2JsonRedisSerializer);
        redisTemplate.setHashKeySerializer(jackson2JsonRedisSerializer);
        redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer);

        return redisTemplate;
    }

    @Bean
    public StringRedisTemplate stringRedisTemplate(RedisConnectionFactory factory) {
        StringRedisTemplate stringRedisTemplate = new StringRedisTemplate();
        stringRedisTemplate.setConnectionFactory(factory);
        return stringRedisTemplate;
    }

    //初始化布隆过滤器,放入到spring容器里面
    @Bean
    public BloomFilterHelper<String> initBloomFilterHelper() {
        return new BloomFilterHelper<>((Funnel<String>) (from, into) -> into.putString(from, Charsets.UTF_8).putString(from, Charsets.UTF_8), 1000000, 0.01);
    }
}

BloomFilterHelper.calss

import com.google.common.base.Preconditions;
import com.google.common.hash.Funnel;
import com.google.common.hash.Hashing;

public class BloomFilterHelper<T> {

    private int numHashFunctions;

    private int bitSize;

    private Funnel<T> funnel;

    public BloomFilterHelper(Funnel<T> funnel, int expectedInsertions, double fpp) {
        Preconditions.checkArgument(funnel != null, "funnel不能为空");
        this.funnel = funnel;
        // 计算bit数组长度
        bitSize = optimalNumOfBits(expectedInsertions, fpp);
        // 计算hash方法执行次数
        numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, bitSize);
    }

    public int[] murmurHashOffset(T value) {
        int[] offset = new int[numHashFunctions];

        long hash64 = Hashing.murmur3_128().hashObject(value, funnel).asLong();
        int hash1 = (int) hash64;
        int hash2 = (int) (hash64 >>> 32);
        for (int i = 1; i <= numHashFunctions; i++) {
            int nextHash = hash1 + i * hash2;
            if (nextHash < 0) {
                nextHash = ~nextHash;
            }
            offset[i - 1] = nextHash % bitSize;
        }

        return offset;
    }

    /**
     * 计算bit数组长度
     */
    private int optimalNumOfBits(long n, double p) {
        if (p == 0) {
            // 设定最小期望长度
            p = Double.MIN_VALUE;
        }
        int sizeOfBitArray = (int) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
        return sizeOfBitArray;
    }

    /**
     * 计算hash方法执行次数
     */
    private int optimalNumOfHashFunctions(long n, long m) {
        int countOfHash = Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
        return countOfHash;
    }
}

然后是具体的布隆过滤器配合Redis使用的方法类RedisBloomFilter.class

import com.google.common.base.Preconditions;
import com.jc.mytest.util.BloomFilterHelper;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;

@Service
public class RedisBloomFilter {
    @Autowired
    private RedisTemplate redisTemplate;

    /**
     * 根据给定的布隆过滤器添加值
     */
    public <T> void addByBloomFilter(BloomFilterHelper<T> bloomFilterHelper, String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "bloomFilterHelper不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
           System.out.println("key : " + key + " " + "value : " + i);
            redisTemplate.opsForValue().setBit(key, i, true);
        }
    }

    /**
     * 根据给定的布隆过滤器判断值是否存在
     */
    public <T> boolean includeByBloomFilter(BloomFilterHelper<T> bloomFilterHelper, String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "bloomFilterHelper不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
            System.out.println("key : " + key + " " + "value : " + i);
            if (!redisTemplate.opsForValue().getBit(key, i)) {
                return false;
            }
        }
        return true;
    }
}

到这里,其实整合Redis并使用BloomFilter布隆过滤器的代码都已经完毕

测试接口

@Autowired
RedisBloomFilter redisBloomFilter;

@Autowired
private BloomFilterHelper bloomFilterHelper;

@ResponseBody
@RequestMapping("/add")
public String addBloomFilter(@RequestParam ("orderNum") String orderNum) {
    try {
        redisBloomFilter.addByBloomFilter(bloomFilterHelper, "bloom", orderNum);
    } catch (Exception e) {
        e.printStackTrace();
        return "添加失败";
    }

    return "添加成功";
}

@ResponseBody
@RequestMapping("/check")
public boolean checkBloomFilter(@RequestParam ("orderNum") String orderNum) {
    boolean b = redisBloomFilter.includeByBloomFilter(bloomFilterHelper, "bloom", orderNum);
    return b;
}

版权声明:
作者:Joe.Ye
链接:https://www.appblog.cn/index.php/2023/04/02/spring-boot-uses-bloomfilter-bloom-filter-mechanism-in-redis/
来源:APP全栈技术分享
文章版权归作者所有,未经允许请勿转载。

THE END
分享
二维码
打赏
海报
SpringBoot在Redis中使用BloomFilter布隆过滤器机制
Redis缓存穿透:查询Redis,为了防止他人恶意使用不存在的key访问redis,造成大批量的出现缓存穿透现象(直接查询数据库,导致数据库扛不住) Maven依赖 添加 ……
<<上一篇
下一篇>>
文章目录
关闭
目 录